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ABSTRACT
For the past quarter century, AI researchers have used the
paradigm of collaborating software systems to tackle large
and difficult problems. Blackboard systems were the first at-
tempt at integrating ”cooperating” software modules. The
goal was to achieve the flexible, brainstorming style of prob-
lem solving exhibited by a group of diverse human experts
working together to address problems that no single expert
could solve alone. Multi-agent systems research is revisiting
the collaborating-software paradigm from an agent-centric
orientation. Again the goal is to achieve effective collabo-
ration with a group of independent software entities, but in a
way that appears to be markedly different from the approach
taken in blackboard systems.

In this paper, I compare and contrast these two approaches.
Examining collaborating software from both perspectives pro-
vides insights into the nature of collaboration, reveals unre-
solved problems in integrating disparate contributions, and
underscores issues in coordinating collaborative activities.
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1. COLLABORATING SOFTWARE
For the past quarter century, AI researchers have used the
paradigm of collaborating software systems to tackle large and
difficult problems. The collaborating-software paradigm is
an effective divide-and-conquer approach to the development
and maintenance of large and complex software applications.
In this approach, a number of smaller, independently devel-
oped and maintained software modules are applied in concert
to form the overall system. The individual details and com-
plexity associated with each module is encapsulated within
the module, and computations that require the capabilities of
multiple modules involve collaboration among modules.

Blackboard systems were the first attempt made by AI re-
searchers at integrating “cooperating” software modules [5,
13, 23]. The goal was to achieve the flexible, brainstorm-
ing style of problem solving exhibited by a group of di-
verse human experts working together to address problems
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that no single expert could solve alone. The resulting tech-
nology enabled applications that are among the most ad-
vanced and capable AI systems that have been developed.
Multi-agent systems research is revisiting this collaborating-
software paradigm from an agent-centric orientation. Again
the goal is to achieve effective collaboration with a group of
independent software entities, but in a way that appears to
be markedly different from the approach taken in blackboard
systems.

Collaborating software involves the integration and coor-
dination of relatively independent, self-contained software
systems that are able to work together effectively on their
own. Although the names are nearly identical, the goals and
purposes of “collaborating software” are very different from
“collaboration software,” where the software is used to facili-
tate the interaction among human participants rather than to
provide an automated environment where software—and po-
tentially human—entities work together in order to perform
complex activities. Collaboration software includes concur-
rent mark-up and collaborative-engineering environments,
virtual conferencing facilities, whiteboarding software, etc.
Examples of collaborating software include blackboard sys-
tems and some multi-agent systems.

For the past few years, I have been using “collaborating
software” to delineate a broad area of study relating to the
automated support of collaboration among human and/or
software entities. A number of research areas address is-
sues relevant to collaborating software (Figure 1). These ar-
eas include blackboard systems1 and some aspects of multi-
agent systems, as well as programming in the large (PIL) or
“megaprogramming,” component-based software engineer-
ing, distributed-object systems, computer-supported cooper-
ative work (CSCW) and collaboration environments, and re-
search into effective human collaboration and biological so-
cieties. In this figure, the large oval indicates the space of
collaborating-software research.

1.1 Collaborating-Software Challenges
There are six key challenges involved in creating effective

collaborating-software systems:

1. Representation — getting software modules to under-
stand one another

2. Awareness — making modules aware when something
relevant to them occurs

1In the field of software architectures, blackboard-style sys-
tems are called repositories [32, 31].



Figure 1: Collaborating-Software Research Areas

3. Investigation — helping modules to quickly find infor-
mation related to their current activities

4. Interaction — creating modules that are able to use the
concurrent work of others while working on a shared
task2

5. Integration — combining results produced by other
modules

6. Coordination — getting modules to focus their activi-
ties on the right things at the right time

How these challenges are addressed has a significant effect
on application performance and scalability, and each of these
collaborating-software challenges will be considered in more
detail shortly.

Because blackboard systems are fully within the space of
collaborating software and were, historically, the first at-
tempt at creating collaborating software modules, we next
look closely at the architectural techniques developed for
blackboard systems, how they address the six collaborating-
software challenges, and why these techniques work so effec-
tively.

2. BLACKBOARD SYSTEMS
In my opinion, the blackboard framework is the most
general and flexible knowledge-system architecture.

— Edward A. Feigenbaum[15]

Blackboard systems were first developed in the 1970s to solve
complex signal-interpretation problems in systems such as
Hearsay-II [25, 14] and, shortly thereafter, HASP/SIAP [28].
Since the days of those early blackboard-system applications,
the blackboard approach has been viewed as an ideal candi-
date for tackling difficult, ill-structured problems in a wide
range of application areas. Given this reputation, it is sur-
prising that blackboard systems are not widely understood
in depth, are rarely mentioned in modern AI texts, and are
even considered by some to be outdated technology (gener-
ally without mention of a replacement-technology candidate).
Given this, it is important to look into the details of black-
board systems and the basis for their reputation.

2.1 What is a blackboard system?

2In many situations, concurrent interaction can be replaced
with interleaved executions.

(a) Directly Con-
nected

(b) Anonymously Interact-
ing

Figure 2: Connecting Modules Together

A traditional way of combining a set of diverse software
modules is to connect them according to their data-flow re-
quirements (such as the five modules shown in Figure 2(a)).
When appropriate, the modules can appear multiple times in
the communication graph, but the connections are predeter-
mined and direct. This approach can work well when both
the module set and the appropriate communications among
modules are static. When the specific modules are subject
to change and/or when the ordering of modules cannot be
determined until specific data values become known at ex-
ecution time, the inflexibility of direct interaction becomes
unwieldy. From a system-building perspective, direct interac-
tion promotes the use of private communication protocols be-
tween modules. Such specialized protocols can be made suc-
cinct and efficient, but changes to the communication graph
or the addition of a new module can require changes to a
number of individual communication protocols.

Another approach is to use indirect and anonymous com-
munication among modules via an intermediary, such as a
blackboard data repository (Figure 2(b)). In this approach,
all processing paths are possible, and the choice among paths
can be made dynamically by a separate “moderator” mecha-
nism that selects among the possible paths. The information
placed on the blackboard is public, available to all modules,
control mechanisms, newly added modules, and monitoring
and debugging tools. Indirection reduces the number of com-
munication interfaces that must be supported among highly
collaborating modules.

A blackboard system consists of three main components
(Figure 3):

• Knowledge sources (KSs) are independent compu-
tational modules that together contain the expertise
needed to solve the problem. KSs can be widely diverse
in their internal representation and computational tech-
niques and are anonymous in that they do not interact
directly with one another or know what other specific
KSs are present in the system.



Figure 3: Blackboard-System
Components

• The blackboard is
a global data repos-
itory containing in-
put data, partial so-
lutions, and other
data that are in vari-
ous problem-solving
states. All KS inter-
action is via changes
made on the black-
board.

• A control compo-
nent that makes
runtime decisions
about the course
of problem solving
and the expenditure

of problem-solving resources. The control component
is separate from the individual KSs.3

Although all blackboard systems have these three main com-
ponents, their mere presence does not create the powerful
framework described in Feigenbaum’s quote. Let’s consider
each of these three main components in more detail.

2.2 KSs
Blackboard systems use a functional modularization of ex-

pertise. Each KS is a specialist at solving certain aspects of
the overall application and is separate and independent of all
other KSs. A KS does not require other KSs in making its
contribution. Once it finds the information it needs on the
blackboard, it can proceed without any assistance from other
KSs. Furthermore, without making changes to any other KSs,
additional KSs can be added to the blackboard system, poorer
performing KSs can be enhanced, and inappropriate KSs can
be removed. KSs perform relatively large computations, re-
flecting the processing required to implement their specialty.

A KS needs no knowledge of the expertise, or even the ex-
istence, of the others; however, it must be able to understand
the state of the problem-solving process and the represen-
tation of relevant information on the blackboard. Each KS
knows the conditions under which it can contribute to the
solution and, at appropriate times, attempts to contribute in-
formation toward solving the problem. This knowledge that
each KS has about when it might be able to contribute to the
problem-solving process is known as a triggering condition.

At an abstract level, a blackboard system may appear to
be very similar to a rule-based system: the blackboard sys-
tem’s blackboard and the rule-based system’s working mem-
ory; the blackboard system’s KSs and the rule-based system’s
production rules; event-based triggering of KSs and of rules;
anonymous interaction of KSs and rules; and so on. His-
torically and operationally, however, blackboard-systems and
rule-based systems are very different, especially in the size
and scope of rules versus the size and complexity of KSs and
in the relatively small number of large-grained control deci-
sions that are made by a blackboard system versus the large
number of fine-grained conflict-resolution decisions made by
a rule-based system. With regard to knowledge granularity,
KSs are substantially larger and more complex than each iso-
morphic rule in an expert system. While expert systems work

3In some blackboard systems, the control component itself is
implemented using a blackboard approach (involving control
KSs and blackboard areas devoted to control).

by firing a rule in response to stimuli, a blackboard system
works by executing an entire KS in response to an event. Each
KS can be arbitrarily complex and internally different from
one another. In particular, a single KS in a blackboard system
could be implemented as a complete rule-based system [6].

KSs are not the active “agents” in a blackboard system. In-
stead, KS activations (historically also called KS instances) are
the active entities competing for computational resources. A
KS activation is the combination of the KS knowledge and a
specific triggering context. The distinction between KSs and
KS activations is important in applications where numerous
events occur that trigger the same KS. In such cases, control
decisions involve choosing among particular applications of
the same KS knowledge (focusing on the appropriate data
context), rather than among different KSs (focusing on the
appropriate knowledge to apply). Taking this distinction one
step further, KSs are static repositories of knowledge while KS
activations are the active “agents” that are created in response
to each triggering context. These KS-activation “agents” re-
main alive only until the KS activation is executed or is can-
celed prior to execution.

2.3 The blackboard
The blackboard is a shared data structure that is available

to all KSs and serves as:
• a community memory of raw input data; partial solu-

tions, alternatives, and final solutions; and control in-
formation

• a communication medium and buffer
• a KS trigger mechanism

Blackboard applications tend to have elaborate blackboard
structures, with multiple levels of abstraction. Although this
organization of blackboard data is often useful to the devel-
oper and user of the system, the principal reason is to make
locating appropriate information on the blackboard more ef-
ficient. If the problem being solved is complex and the num-
ber of contributions placed on the blackboard becomes large,
quickly locating pertinent information becomes a problem. A
KS execution4 should not have to scan the entire blackboard to
see if appropriate items have been placed on the blackboard
by another KS execution.

One solution is to subdivide the blackboard into regions,
each corresponding to a particular kind of information. This
approach is commonly used in blackboard systems, where
different levels, planes, or multiple blackboards are used to
group related objects. Similarly, ordering metrics can be used
within each region, to organize information numerically, al-
phabetically, or by relevance. Advanced blackboard-system
frameworks provide rich positional metrics for efficiently lo-
cating blackboard objects of interest [7].

Efficient retrieval is needed to support the use of the black-
board as a group memory for contributions generated by ear-
lier KS executions. An important characteristic of the black-
board approach is the ability to integrate contributions for
which relationships would be difficult to specify by the KS
writer in advance. For example, a KS working on one aspect
of the problem may put a contribution on the blackboard that
does not initially seem relevant or immediately interesting to
any other KS. Only until much later, when substantial work
on other aspects of the problem has been performed, is there

4The term “KS execution” is shorthand for the execution of a
KS activation.”



Figure 4: Classic Blackboard-System Control Cycle

enough context to realize the value of the early contribution.
By retaining these contributions on the blackboard, the sys-
tem can save the results of these early problem-solving efforts,
avoiding recomputing them later (when their importance is
understood). Additionally, the blackboard control component
can notice when promising contributions placed on the black-
board remain unused by other KSs and possibly choose to fo-
cus problem-solving activity on understanding why they did
not fit with other contributions.

Typically, locating previously generated contributions of in-
terest is dependent upon the context of other information be-
ing used by a KS. This makes a simple pattern-matching spec-
ification of the specific contributions difficult and computa-
tionally inefficient.5 Many contributions placed on the black-
board may never prove useful, and maintaining the state of
numerous, partially completed patterns is expensive. There-
fore, an important characteristic of blackboard systems is en-
abling a KS to efficiently inspect the blackboard to see if rele-
vant information is present.

2.4 Control component
In a blackboard system, a separate control mechanism,

sometimes called the control shell, directs the problem-solving
process by allowing KSs to respond opportunistically to
changes made to the blackboard. A blackboard system uses
an incremental reasoning style: the solution to the problem is
built one step at a time.

In a classic blackboard-system control approach, the cur-
rently executing KS activation generates events as it makes
changes on the blackboard (Figure 4). These events are main-

5The developers of the original Hearsay-II blackboard system
recognized that complex, conjunctive trigger-condition spec-
ifications of KS interest would be inefficient as well as un-
suited to highly parameterized patterns involving positioning
in time and other real-valued point and interval (or region)
attributes. Instead, they opted for a combination of simple
triggering-condition specifications to be followed by a more
detailed procedural examination of the blackboard before
fully activating the KS [22]. Although this Hearsay-II design
decision was made a few years before the development of spe-
cialized pattern-matching algorithms such as RETE [17], the
choice remains appropriate for almost all blackboard-system
applications due to the large ratio of partially completed pat-
terns to fully completed ones.

Figure 5: Separation (Encapsulation) of Control Knowl-
edge

tained (and possibly ranked) until the executing KS activation
is completed. At that point, the control shell uses the events
to trigger and potentially activate KSs. The KS activations are
ranked, and the most appropriate KS activation is selected for
execution. This KS-execution cycle continues indefinitely (for
continuous applications) or until the problem is solved (for
single-solution-based applications).

It is important that the control component in a blackboard
system is able to make its selection among pending KS activa-
tions without possessing the detailed expertise of the individ-
ual KSs. Without such a separation, the modularity and in-
dependence of KSs would be lost. If specific knowledge of all
the KSs had to be included within the control shell, it would
have to be modified every time a KS was added or removed
from the system. On the other hand, we do not want KSs
to be making autonomous control decisions—in a blackboard
system, control decisions are made by the control shell.

The solution is to separate control knowledge into generic,
overall control knowledge contained in the control shell and
detailed KS-specific control knowledge packaged with each
KS. Then, whenever the control shell needs KS-specific con-
trol information, it asks the individual KSs for these estimates
on how the KS will behave. This separation of control knowl-
edge is shown in Figure 5. When a KS is triggered, the con-
trol shell passes the triggering context to the KS, which uses
its KS-specific control knowledge to estimate factors such as
the quality, importance, cost, and likelihood of successfully
making potential contributions. This estimate is determined
without actually performing the work to compute the con-
tributions. Instead, each KS generates estimates of the con-
tributions that would be generated by using fast, low-cost,
approximations developed by the KS writer. These estimates
are of the form, “If this activation is selected for execution, I
estimate it will generate contributions of this type, with these
qualities, while expending these resources.” The KS returns
these estimates to the control shell which uses them in decid-
ing how to proceed.

3. BLACKBOARD SYSTEMS AS COLLAB-
ORATING SOFTWARE

To better understand why blackboard systems have been such
effective problem-solving architectures, and provide insights
into their limitations, we consider how the blackboard ap-
proach addresses each of the six key collaborating-software
challenges.

3.1 Representation
The structure of information on the blackboard is at the

heart of the blackboard-system approach. In principle, the
blackboard representation should not be based on any spe-
cific set of KSs. Instead, the design of the blackboard rep-
resentation should stem directly from the characteristics of



the application and the goal of allowing any potential KS to
make contributions toward a solution. In practice, however,
the design of the blackboard representations are not fully di-
vorced from a general sense of the kind of KSs that will be
used in the application, and experience has demonstrated that
choices made in the blackboard representation can have a ma-
jor effect on system performance and complexity.

The KSs in a blackboard application must be able to cor-
rectly interpret the information recorded on the blackboard
by other KSs. Additionally, the control shell may also need
to understand aspects of blackboard data in order to make
strategic focus-of-attention decisions. However, all aspects of
blackboard data do not need to be understandable by all KSs.
Many KSs only use data from one or two blackboard levels
as input and only make modifications at a single blackboard
level. Similarly, KSs may only operate on a few classes of
blackboard objects. In a very practical sense, this character-
istic means that portions of the blackboard may be relevant
to only a few KSs and could be specialized to the interaction
requirements among those KSs. Yet, private jargon shared by
only a few KSs limits the flexibility of applying other KSs on
that information in the future. In practice, there is a trade-off
between the representational expressiveness of a specialized
representation shared by only a few KSs and a fully general
representation understood by all KSs. Determining the proper
balance between a general and specialized representation is
an important aspect of blackboard-application engineering.

Having KSs suggest possibilities is an important activity in
blackboard-system applications (and collaborating software
in general). When human problem-solvers brainstorm to-
gether, “thinking aloud” by one participant often stimulates
ideas in others in a highly synergistic fashion. However,
the amount of such sharing needs to be appropriate to the
problem-solving context. If participants withhold ideas until
they are highly confident in their veracity, potential stimulat-
ing suggestions may be lost. On the other hand, if everyone
shares every harebrained idea, there will be so much distrac-
tion that progress toward a solution will be impeded [26].
When it comes to implementing the blackboard representa-
tion, consideration must be given to efficiently supporting the
aggressive sharing of contributions among KSs. A highly effi-
cient implementation can support more aggressive sharing of
lower confidence (but possibly relevant) contributions.

There is a second dimension of sharing that involves the
degree of detail in the contributions that are placed on the
blackboard. At one extreme in this detail dimension, KSs only
put on the blackboard the minimal amount of information
needed to convey the results of their work to other KSs. All
specific details of how the results were generated and simi-
lar processing-context information remain unshared. At the
other extreme, a detailed representation of the relationship
between inputs, interim partial work product, the knowledge
procedures used, etc., are placed onto the blackboard along
with the basic KS results. This level of detail allows other
KSs (and control and explanation tools) to critique and inte-
grate the results based on the processing activities that were
performed by the KS. It is pointless and inefficient to put de-
tailed information onto the blackboard that is never used, but
not sharing information also limits possibilities. Again, deter-
mining the right level of sharing is an important engineering
decision.

Any architectural mechanisms that increase the cost of plac-
ing information onto the blackboard must be carefully evalu-

ated in light of the potential performance decrease that would
result from aggressive sharing. For example, high-use black-
board data is typically memory resident in high-performance
blackboard applications. Using a main memory repository
rather than a traditional database allows KS contributions to
be made at memory rather than disk speed. Similar consid-
erations apply to the persistence of blackboard data. Main-
taining full persistence of highly dynamic and transient black-
board data can significantly lower blackboard-system perfor-
mance. Instead, strategies for maintaining only important or
non-reconstructible blackboard data can be used to reduce
disk bandwidth requirements.

In the basic blackboard-system control cycle, only a sin-
gle KS activation is executing at any time. This KS execu-
tion runs to completion (or termination by the control shell)
before another KS execution begins. To further simplify the
architecture in this basic control cycle, only the executing KS
is allowed to make changes to the blackboard while it is ex-
ecuting. This requirement eliminates the need to incorporate
complex blackboard locking or transaction mechanisms that
would slow down blackboard operations [16, 4].

3.2 Awareness
In a blackboard application, KSs are triggered in response

to specific types of blackboard (and external) events that indi-
cate that the KS may be able to contribute to problem solving.
Rather than having KSs continually poll the blackboard, the
control shell is told about the kind of events in which each
KS is interested. This is typically called registering the KS.
The control shell maintains this triggering information and
directly considers the KS for activation whenever that kind of
event occurs. To be efficient, this triggering information is
provided to the low-level blackboard repository accessor rou-
tines which only notify the control shell of events for which
any KS is currently registered. KS triggering can be made
highly efficient when the registration involves only simple,
disjunctive trigger events.

3.3 Investigation
When a KS is triggered by one or more events, it must often

look on the blackboard for other information that is related
to these events. This search for associated data involves: 1)
computing approximate attribute values for the kind of black-
board objects that are relevant to computations stemming
from these triggering events, and then 2) finding those ob-
jects on the blackboard. For example, a KS that is triggered by
the sudden movement of an unfriendly unit toward a friendly
position might look on the blackboard for related movement
of other unfriendly units that could indicate the initiation of
an orchestrated threat. Units of interest would be unfriendly,
within some radius of the friendly position, and may have
recently changed their movements. The identity (names) of
these units of interest are not known, nor are they linked to
the unit whose change triggered the event or to units at the
friendly position. The units of interest can only be determined
by the approximate values of some of their attributes. The im-
portance of such proximity-based associative retrieval to locate
relevant objects that have been placed on the blackboard by
other KSs is often overlooked in casual discussions of black-
board systems.

Most KS executions in a blackboard system involve the fol-
lowing steps (Figure 6):

1. the control shell is notified of an event of interest to the



Figure 6: KS Activities

KS
2. this triggering context is used to activate the KS
3. the KS uses the triggering context to determine the

ranges of attribute values that are relevant to the trig-
gering context and looks on the blackboard to see what
additional blackboard objects have attributes within
those ranges

4. the KS uses the retrieved objects and the triggering con-
text information to perform its computations

5. the results of this computation are written onto the
blackboard

In this sequence, step 3 is the step associated with investiga-
tion.

Associative retrieval of blackboard data is central to the
blackboard paradigm. It is used to facilitate the indirect and
anonymous communication among KSs by allowing them to
look for relevant information on the blackboard rather than
receiving the information directly from other KSs. Objects
on the blackboard often have significant latency between the
time they are placed on the blackboard and the time they
are determined to be relevant for use by another KS. If it
were not for this latency between creation and use, the black-
board could be compiled away into direct calls among KSs
by a configuration-time compiler, and we would be back to
the directly connected modules of Figure 2(a). This latency
in blackboard objects supports the use of the blackboard as a
both a short-term scratchpad and a longer-term global mem-
ory for the KSs. Objects are held on the blackboard to be
used when and if they are needed by the KSs. It is support
for the temporal separation of creation and use that provides
blackboard systems with such flexibility in ordering KS execu-
tions. In order to obtain this same flexibility without a shared
blackboard, each KS module would have to maintain its own
copy of objects received from other modules. Furthermore,
whether the memory is globally shared (on the blackboard)
or private (within a KS), an efficient means of scanning for
remembered objects is required.

3.4 Interaction

Blackboard systems prohibit direct interaction among mod-
ules, as all communication is done via the blackboard. Tra-
ditional blackboard systems have only a single control thread
and execute only one KS activation at a time; once execution
is started, the KS activation runs to completion or until it is
aborted by the control shell. This means that all interaction
among KS activations is serial, is unidirectional (from earlier
to later executions), can have unbounded latency, and is indi-
rect via the blackboard. This severe restriction on interaction
greatly simplifies the development of blackboard applications,
but in certain situations this restriction can be a significant
collaborating-software limitation.

Assume that KS A and B both are interested in the same
event and can both do some initial work without interacting
with one another. However, the initial work of A is needed for
B to complete its work and vice versa. In this situation, the
blackboard-application designer must artificially split A into 2
KSs, APRE and APOST, and similarly, B is split into BPRE and
BPOST. Once APRE completes, BPOST can begin and, similarly,
once BPRE completes, APOST can begin. If a lot of interaction
is required, this KS-splitting approach can result in a large
number of artificial KS fragments. Alternatively, the same it-
erative form of interaction can be achieved by creating KSs
that are able to jump into later computations, based on the
information present on the blackboard. In this case, multiple
KS executions are still required to support the serial interac-
tion, but the number of KSs present in the system does not
need to be increased.

Parallel and distributed blackboard-system extensions of
the classic, single-threaded blackboard architecture allow
true concurrent KS executions, and this raises another impor-
tant interaction issue. If the KSs are to remain anonymous
and indirect in their interaction, then all interaction must still
occur via changes to the blackboard. Executing KSs must be
able to notice and respond to changes made to the blackboard
during their execution to support such indirect interaction.6

We could also extend the KS model to allow for direct com-
munication among co-executing KS activations. However, this
is a major departure from the blackboard-system model, and
it is problematic because of the uncertainty about which KS
activations will be executing concurrently at any moment.

3.5 Integration
Integration and representation are closely linked in

blackboard-system applications. The representation choices
that are made not only effect the ability of KSs to use the
results of others, but also how KS results are combined. In
a blackboard application, integration of results involves three
major activities: relationship management, attribute merging,
and value propagation.

The need for relationship management occurs when a KS ex-
ecution wants to create a new object on the blackboard and
the semantics of the blackboard representation requires that
the relationship between the new object and some existing
objects be represented. A simple example of this is the cre-
ation of a higher-level object as a result of identifying a set of
lower-level supporting objects, such as creating a platoon ob-
ject based on a set of individual unit objects. If this synthesis
activity is performed by a single KS execution, the relation-
ship between the new platoon object and the set of supporting
unit objects can be easily represented by also creating support
6This is a special case of the general problem of blackboard
changes occurring during KS execution.



links7 that connect the objects. Such support links explicitly
maintain the relationship between the objects on the black-
board.

Now, let’s assume that a new individual unit object is de-
tected that should be added to the set of supporting units
for the platoon object. If the “platoon synthesis” KS is regis-
tered to be triggered on the creation of individual unit objects,
when it executes it might again want to create a platoon ob-
ject based on the new, slightly larger set of support objects. If
no platoon object had yet been created on the blackboard, the
system could simply create the new object and all the support
links as before. In this case, however, there already exists a
platoon object that is semantically identical to the new platoon
object. It is not good to allow multiple, semantically identical
objects to be placed onto the blackboard. So, instead, a new
support link is added between the existing platoon object and
the newly created, individual unit object.

What blackboard-system component should be responsible
for maintaining these relationships? One approach makes
each KS responsible for this. When an executing KS wants to
create a new blackboard object, it must first check to see if a
semantically equivalent object already exists (which involves
a blackboard retrieval). If one is found, the KS modifies the
relationships of the existing object instead of creating a new
object and relationships. This approach requires that each KS
writer perform this check and that the semantics of equiva-
lency are consistent across all KSs.

Another approach is to make equivalent-object checking
and relationship management part of the unit-creation oper-
ation. In this case, the KS would ask to create a new pla-
toon unit with links to the support units and the blackboard
itself would perform the required bookkeeping. This latter ap-
proach begins to move the blackboard from a passive reposi-
tory to a more active entity with application knowledge about
what constitutes equivalency and how to handle duplicate
creation requests.

The second integration activity is attribute merging. Us-
ing our same example, assume that the belief in a platoon
object is based on the number, types, and relative positions
of supporting units that are linked to it. When the second
KS execution wants to generate a duplicate platoon object,
the platoon’s belief attribute needs to be changed in addition
to the link attributes. As with relationship management, we
can have the KS execution determine the new belief value
or we can have the blackboard object-creation routines do it
automatically. The problem with the latter approach is that
the knowledge required by the blackboard grows with the
complexity of determining merged values. We certainly do
not want to end up duplicating much of the knowledge used
by KSs in computing new blackboard objects in automatic
blackboard-integration routines.

Belief values are a special attribute that we will revisit
shortly when we consider principled integration. However,
there can be many other attribute values that may differ
among objects that are considered equivalent. Perhaps the
location of our platoon object does not have to be precisely
identical for the old and new objects to be considered equiv-
alent. The addition of the new supporting unit may result in
a slightly more accurate estimate of the overall position at-
tribute used to represent the location of the platoon. Now
when the old and new platoon objects are merged, the loca-

7A link is a bidirectional pointer between two objects.

tion attribute also needs to be changed to reflect the improved
position estimate. Clearly, as the number of object attributes
that need to be appropriately merged grows, the complexity
of work required by either every KS execution or the shared
blackboard-representation maintenance routines also grows.

The third integration activity is value propagation. Assume
that the belief associated with the platoon object is a function
of the beliefs of its supporting units and their spatial locations
relative to one another. Assume a field report is received that
contains a confirmed sighting of one of the supporting units
of the platoon and that the KS execution that processes this
information increases the belief value of the supporting unit.
We would like this increased belief value to propagate to the
platoon value, increasing our belief in it as well. Again, we
could make this propagation be the responsibility of the ex-
ecuting KS or an activity of a more active blackboard repos-
itory. Similarly, suppose yet another KS execution, using dif-
ferent sensor data than was available to earlier KS executions,
is able to compute a more accurate position for one of the sup-
port units and changes the position attribute of that support
unit. We would like this new position value to be used to
update the position attribute of the platoon unit and, poten-
tially, the platoon unit’s belief value if the new location of the
supporting unit affects the belief calculation.

Historically, blackboard systems have handled these inte-
gration activities in a very ad hoc manner. Some applica-
tions placed the responsibility for these activities with the ex-
ecuting KSs. This required substantial discipline on the part
of KS writers to maintain semantic consistency across KSs.
Other applications placed this responsibility with the black-
board, risking duplication of KS knowledge and the potential
for inconsistency if the way that the KS performed its activi-
ties was changed significantly. By careful modularization and
sharing of code among KSs and the “active” blackboard, it
is possible to reduce this duplication and risk. Finally, some
applications dealt with value propagation by simply trigger-
ing and executing KSs again if important attributes used in
their contributions changed. In this case, a re-executed KS
simply replaced its original contributions with the latest ver-
sion. Each of these approaches worked well enough in spe-
cific situations and, when used with care, allowed complex
blackboard-system applications to be built.

Recent growth in the use of principled graphical models,
such as Bayesian networks, in AI systems [29, 30, 34, 33,
20] have made the ad hoc confidence and belief values that
have been used in most blackboard applications seem partic-
ularly unprincipled. These ad hoc belief values were involved
in everything from making control decisions to determining
solutions and the system’s confidence in them. How to best
incorporate more principled integration of KS results remains
an open blackboard-system research issue, particularly in re-
lation to the amount of sharing discussed earlier.

The main motivation for moving to a principled represen-
tation of blackboard data is to make the integration of dis-
parate KS results well founded. This can only be achieved
by creating accurate models of how these results are gener-
ated and relate to one another. Note that such models of
result integration are not identical to probabilistic graphical
models of the underlying domain. This is a subtle, but im-
portant, distinction—models used for integrating KS results
reflect properties of the collaborating-software system and
its behavior rather than only properties of the problem do-
main. For example, conditional-independence assumptions in



Figure 7: Separation (Encapsulation) of Integration
Knowledge

application-level models that might be used within KSs to de-
termine their results stem from domain properties: the nodes
and the relationships among them relate to understanding
of the domain in which the application is operating. Con-
ditional independence in graphical result-integration models,
however, are based on knowledge of how the results produced
by a KS were obtained: the specific data pedigrees and algo-
rithms used by the KS. If two KSs trigger on the same event
and produce similar results using different computational ap-
proaches, how independent are the results? Are the two re-
sults redundant8 (with no added certainty in the results) or
are the two techniques complementary (in the sense that each
has the potential to make mistakes on certain data values, but
these mistakes are fully independent of one another)? In the
latter case, the integration model needs to reflect the addi-
tional certainty produced by the corroborating KS execution.

A principled domain model can be used to determine
the effect that obtaining particular observations will have
on the current assessment of the problem. Such power-of-
information reasoning is very useful in making control deci-
sions among KSs that can produce various observations. Sim-
ilarly, a principled result-integration model is also useful in
making control decisions, as it can be used to determine the
potential of a KS increasing the confidence in an attribute
value. If both models are used together, principled power-
of-information and power-of-reasoning control decisions can
be made.

Creating a principled integration model for a blackboard
application requires close analysis of how the KSs in the appli-
cation operate in conjunction with one another. Yet, such an
analysis is antithetical with the independent and anonymous
KS philosophy of blackboard systems, as any changes in the
set of KSs used in the application are likely to require changes
in the principled result-integration model. The model may
even need to be changed if the computations used in a KS are
modified. This close coupling is not surprising, as integrating
KS results really requires understanding their pedigree. These
issues have always been present in blackboard systems, they
have only been hidden in the use of ad hoc integration tech-
niques or ignored in favor of higher order issues. From a
practical standpoint, however, how we maintain the consis-
tency of the result-integration model with the current KS set
is an important issue. Just as KS-specific control expertise is
developed and maintained with each KS, it is important to
develop KS-specific models of result generation that can be
incorporated into an overall result-integration model when
the KS is added to the system (Figure 7). Such a capability
remains to be developed, but it is an important research goal
in enabling principled result integration in applications, that
will have many KS changes throughout their lifetimes.

Finally, the degree that results are shared in a blackboard

8Certainly reflecting a control problem.

application has a direct relation to the complexity of the
result-integration models. The integration model need only
address results produced by KSs that are placed onto the
blackboard, so there is a tension between limited sharing
(which reduces the size of the integration model) and aggres-
sive sharing (with a complex integration model). Principled
result integration adds yet another consideration to degree-
of-sharing design decisions.

3.6 Coordination
The last collaborating-software challenge is running the

right KSs on the right data at the right time. The opportunistic
control that is the hallmark of blackboard systems is highly
flexible, responsive, and generally efficient. During each con-
trol cycle, a traditional blackboard system makes a single, in-
stantaneous choice of the best KS activation to execute and,
if new conditions warrant, the system can focus its attention
on a new area as early as the next cycle.9 As discussed earlier,
executing only one KS activation at a time also greatly simpli-
fies the architecture. Nevertheless, even achieving effective
single-threaded control in a complex blackboard application
can be challenging.

At any given moment, a blackboard application rarely lacks
choices among a large number of potential KS activations to
execute. These choices stem from multiple inputs arriving
into the system, combinatoric ways in which this data can
be combined and used, and, in many applications, multiple
KSs that can be applied to the same data (Figure 8). This
results in a large and dynamic space of possible KS execu-
tions, of which only a small fraction can be pursued. Because
blackboard systems operate incrementally, poor choices early
on can result in triggering a large number of inappropriate
downstream KS executions in response to the results gener-
ated by a single “inappropriate” KS execution. Agenda-based
control uses a utility-based rating computed for each KS ac-
tivation to select the best activation to execute in each cycle.
This rating incorporates the estimates of what the activation
will do if executed (from the KS-specific control knowledge)
and more global requirements, such as parts of the solution
that need attention (from global control information main-
tained by the control shell). Unselected activations remain on
the agenda, potentially to be executed in the future.

While the activations that are queued on the agenda await
execution, the state of the blackboard and of overall problem
solving is being changed by other KS executions. This results
in a queue-latency problem where the information associated
with the KS activation becomes inconsistent with the current
situation (Figure 9). One naive solution to this problem is to
re-rate all KS activations on every cycle. However, since the
number of pending KS activations can become large, this is
not an efficient solution, particularly if the re-rating of each
KS activiation involves searching the blackboard for changes
relevant to the activation. Blackboard systems using this ap-
proach have needed to artificially limit the number of acti-
vations held pending or to re-rate only the topmost activa-

9Refocusing can be made even more responsive by allow-
ing the control shell to abort the executing KS activation
in response to critical events. Although it is possible to
merely suspend the KS execution, the potential changes to
the blackboard that might occur while the KS is suspended
can make resumption difficult. In many cases, rerunning the
KS execution—if it is still relevant—is preferable to resump-
tion.
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Although developed independently, KSs have implicit
dataflow relationships among themselves that determine the
amount of potential concurrency (control choice) available in
the KS structure. A linearly-ordered (“pipelined”) KS struc-
ture can only support data concurrency (a). If the ordering
contains incomparable KSs, additional concurrency is possible
among the incomparable KSs (b). Typically, the KS structure
is dependent upon the blackboard data and may contain mul-
tiple minimal and maximal elements (c). In such structures
a number of KS paths are possible, and not all paths need be
initiated or completed.

Figure 8: Linearly- and Partially-ordered KS Structures

tions, under the assumption that the other ratings would not
have changed too drastically. Other systems have organized
the agenda in much the same way as the blackboard, so that
the control shell could quickly identify pending KS activations
that might be affected by changes on the blackboard. Event-
based re-triggering of pending KS activations is an example
of this strategy.

Sometimes blackboard changes make execution of the KS
activation unnecessary. Such obviation events result in re-
moval of the activation from the agenda.10 Obviation can be
performed on every cycle, either by scanning each pending
KS activation or by the use of obviation events, or it can be
deferred until each KS activation is about to be executed. In
the latter case, a revalidation step is performed in conjunc-
tion with selecting the highest rated KS activation from the
agenda. Revalidation can update information that has been
maintained with the activation and, if appropriate, instruct
the control shell to obviate execution of the activation and se-
lect the next KS activation from the agenda. Delaying obvia-
tion in favor of revalidation can be useful if the cost of dealing
with obviation on each cycle is high but the cost of maintain-
ing undetected obviated KS activations (re-rating, etc.) does
not significantly add to the cost of maintaining the agenda.

In addition to the queue-latency problem, simple agenda-
based control techniques can introduce unwelcomed depth-
first bias to opportunistic control. Consider the agenda shown
in Figure 10. KS activations of A and B have the same rating

10Some blackboard implementations simply delete obviated
KS activations, others retain them in an obviated KSA list
in case the conditions change to make them desirable again
[21]. In practice, it is generally more efficient to create a
new KS activation in response to changing conditions than to
maintain obviated activations for reuse.

Figure 9: The Queue-Latency Problem

with C close behind. From a control standpoint, these can
be considered equally valid choices to be executed next. If
A is selected and executed, its results may trigger a number
of other KS activations, such as X, Y, and Z, potentially at
higher ratings than B and C. If B had been selected instead
of A, it might have triggered X′ and Y′, again with ratings
much higher than A and C and potentially even higher than
the ratings of X, Y, and Z. To be fair, and to make our control
decisions as informed as possible, we should execute A, B, and
C before executing any of the KS activations that are triggered
by them.

Figure 10: Depth-First
Search Bias

This is one simple example
of some of the problems that
result from making instanta-
neous, history and purpose
free, control decisions, and
this problem was observed
in the original Hearsay-II
blackboard system [22].
A number of advanced
blackboard-system control
techniques were developed
during the 1980s and early
1990s that provided im-
provements in the ability
to reason about alternative
control decisions, maintain
continuity of purpose and
adherence to plans, and
modify control strategies in

response to application conditions. Some of these efforts
include: integrating data-directed and goal-directed control
[9, 27], control planning [21, 1], uncertainty-reduction
planning [3], and design-to-time scheduling [18, 10]. Many
of these efforts are surveyed in [2].

4. MULTI-AGENT SYSTEMS
Multi-agent systems (MAS) are another technology source
that could be used to build collaborating-software applica-
tions. Rather than use a blackboard system as the basis for
combining KSs, we could make each KS an agent in a MAS
(Figure 11(a)). In many respects, having each KS be an agent
seems closer to the “cooperating experts” style of problem
solving that gave rise to blackboard systems. In contrast with
blackboard systems, MAS research has emphasized:
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Figure 11: Collaborating Agents

• distribution (no central data repository)
• autonomy (local control)
• interaction (communication and representation)
• coordination (achieving coherence in local control deci-

sions)
• organization (emergent organizational behavior)

The majority of MAS research has targeted homogeneous
agent systems and loosely coupled heterogeneous systems
with multiple providers of functionality. Outside of agent-
based design applications [24], there has been limited re-
search with closely collaborating, functional agents—our
“brainstorming experts” analogy.

The interacting expert agents in Figure 11(a) do not have
a blackboard in their meeting room! Without a blackboard,
each agent must not only decide what results to share, but
what other agents to share them with (either via direct com-
munication with other agents or broadcast to everyone). Sim-
ilarly, each agent must decide what results it has received
from other agents—and what results it has produced locally—
should be remembered for later use. If agents need to re-
member very much, some sort of repository (a private “black-
board”) will be needed at each agent. Finally, each agent

must decide what it should be doing, using only its local view
of problem solving activities. We could simplify things for the
agents by providing them with simple rules for what and who
they should communicate with, but if these become too static
our desired flexibility in brainstorming interactions becomes
the directly connected interaction structure we saw in Figure
2(a).

Perhaps there is a reason that every meeting room has a
whiteboard in it. . . A meeting room without a whiteboard
(or similar technology) is just not as effective. We can add a
special “blackboard” agent to our set of agents to provide a
similar capability (Figure 11(b)). Now our agents can com-
municate directly with one another or interact indirectly via
the blackboard agent. In fact, we can eliminate the need for
each agent to maintain its own repository of information by
having the blackboard agent provide this service to the group.
Such functional centralization would have been harshly crit-
icized by early MAS researchers, but the elimination of re-
dundant work by centralization is evident in federated multi-
agent architectures, where specialized agents serve as match-
makers, facilitators, or brokers to eliminate the need for all
agents to perform these activities [11, 19, 12, 35]. To fur-
ther simplify communication decisions by our agents, we can



Figure 12: Collaborating-Software Design Space

require all agent communication to be with the blackboard
agent. To ensure that agents are notified when useful infor-
mation is given to the blackboard agent, we will also have our
agents register their desires with the blackboard agent. When
such information arrives, the blackboard agent will notify the
appropriate agents of its arrival.

At this point, our agents still have to make local control
decisions about what they should be doing. However, much
of the information needed to make these decisions is now lo-
cated at the blackboard agent. We can have our agents del-
egate their local control decisions to the blackboard agent,
which now also becomes a manager agent that tells the other
agents what to do (Figure 11(c)). While co-locating the con-
trol decision making with the data required for these deci-
sions makes sense, the resulting MAS is very divorced from
the strong emphasis on local autonomy of traditional MASs.
In fact, a closer look at Figure 11(c) shows that we have es-
sentially implemented the KS interface in a traditional black-
board system using MAS technology!

5. THE FUTURE
Traditional multi-agent and blackboard systems can be
viewed as two diverse points in the collaborating-software
design space (Figure 12). Traditional blackboard-system re-
search has concentrated on closely collaborating problem-
solving techniques with a single thread of activity operat-
ing in a centralized setting. The KS activations in a black-
board system can be considered as one-shot, stateless agents
that are created in response to an activation event and re-
main alive only until they have been executed. MAS research
has concentrated on long-lived agents that collaborate con-
currently in a distributed environment. Although the high-
performance, closely collaborating capabilities of blackboard
systems is an important aspect of collaborating-software ap-
plications, distribution and concurrency requirements will
also require the use of technologies from other parts of the
collaborating-software design space. What will be important
is using the appropriate technology in the right context.

In general, MAS technologies support loosely coupled, dis-
tributed agents. Therefore using a MAS framework as the

core foundation for closely collaborating software is not an
appropriate choice. High-performance blackboard applica-
tions rely on fast interactions between the blackboard reposi-
tory, KSs, and control components. Adding agent-interaction
costs at this level would be a serious mistake. Neverthe-
less, MAS technologies have their place with large-scale, dis-
tributed applications. Consider Figure 11(d) in which en-
tire blackboard systems have been made into agents. This
is a simple example of an architecture that provides flexi-
bility in grouping closely interacting entities together in an
agent-based environment. If each blackboard system in Fig-
ure 11(d) had only a single KS and only one of the systems
served as the shared blackboard, then Figure 11(d) is essen-
tially the same as Figure 11(c). On the other hand, if all
agents have all the KSs but they only focus on nearby data
in a distributed setting, then Figure 11(d) becomes a homo-
geneous distributed application. By placing only closely inter-
acting KSs in the same agent, this same architecture supports
a more function-based organization [8].

A quarter-century of blackboard-system experience and
more than a decade of MAS development have produced
a strong baseline of collaborating-software technologies.
Yet, much more research remains in developing high-
performance, generic collaborating-software capabilities that
span the entire design space of Figure 12 and in developing
the accompanying expertise for matching design choices to
application settings. Further advances in meeting the six col-
laboration challenges (representation, awareness, investiga-
tion, interaction, integration, and coordination) are needed to
enable the next generation of complex, collaborative-software
applications.
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